11 research outputs found

    Fine-tuning Multi-hop Question Answering with Hierarchical Graph Network

    Full text link
    In this paper, we present a two stage model for multi-hop question answering. The first stage is a hierarchical graph network, which is used to reason over multi-hop question and is capable to capture different levels of granularity using the nature structure(i.e., paragraphs, questions, sentences and entities) of documents. The reasoning process is convert to node classify task(i.e., paragraph nodes and sentences nodes). The second stage is a language model fine-tuning task. In a word, stage one use graph neural network to select and concatenate support sentences as one paragraph, and stage two find the answer span in language model fine-tuning paradigm.Comment: the experience result is not as good as I excep

    Pitch-based ribbon-shaped carbon-fiber-reinforced one-dimensional carbon/carbon composites with ultrahigh thermal conductivity

    Get PDF
    Ribbon-shaped carbon fibers have been prepared from mesophase pitch by melt-spinning, oxidative stabilization and further heat treatment. The internal graphitic layers of ribbon-shaped carbon fibers graphitized at 2800 C show a highly preferred orientation along the longitudinal direction. Parallel stretched and unidirectional arranged ribbon-shaped carbon fibers treated at about 450 C were sprayed with a mesophase pitch powder grout, and then hot-pressed at 500 C and subsequently carbonized and graphitized at various temperatures to produce one-dimensional carbon/carbon (C/C) composite blocks. The shape and microstructural orientation of ribbon fibers have been maintained in the process of hot-pressing and subsequent heat treatments and the main planes of the ribbon fibers are orderly accumulated along the hot-pressing direction. Microstructural analyses indicate that the C/C composite blocks have a typical structural anisotropy derived from the unidirectional arrangement of the highly oriented wide ribbon-shaped fibers in the composite block. The thermal conductivities of the C/C composites along the longitudinal direction of ribbon fibers increase with heat-treatment temperatures. The longitudinal thermal conductivity and thermal diffusivity at room temperature of the C/C composite blocks graphitized at 3100 C are 896 W/m K and 642 mm2/s, respectively.Key Program of Major Research Plan of the National Natural Science Foundation (grant No. 91016003) and the National Natural Science Foundation (grant No. 51372177) of China.http://www.elsevier.com/locate/carbonhb2014ai201

    Bioadhesive Microporous Architectures by Self-Assembling Polydopamine Microcapsules for Biomedical Applications

    No full text
    Bioadhesive microporous architectures that mimic the functions of a natural extracellular matrix (ECM) were prepared by self-assembling polydopamine (PDA) microcapsules, which not only favor cell adhesion and growth, but also facilitate growth factor immobilization and release. PDA-coated polystyrene (PS) microspheres are synthesized by polymerization of dopamine on sulfonated PS microspheres and then assembled using positively charged chitosan (CHI) layers as link agents. After the PS core templates were removed, microporous architectures composed of PDA microcapsules were obtained. The produced microporous PDA architectures have a high capability of adsorbing BMP-2 and realize the sustained release of BMP-2. More importantly, the bioadhesive micro architecture and its immobilized BMP-2 synergistically enhance the activity and osteogenetic differentiation of bone marrow mesenchymal stem cells (BMSCs). Both supercell adhesion and BMP-2 immobilization ability of these architectures are attributed to the intrinsic adhesive nature of PDA and the porous architectures via the assembly of PDA microcapsules. The bioadhesive microporous PDA architectures with both cell affinitive and GF release features have a great potential to mimic natural ECM for modifying various medical devices in the fields of tissue engineering and regenerative medicine

    A comprehensive study on the oxidative stabilization of mesophase pitch-based tape-shaped thick fibers with oxygen

    No full text
    Tape-shaped pitch fibers with a transverse cross-sectional size of 400 μm width and ~30 μm thickness, melt-spun from mesophase pitch, were adopted as a model for treatment in oxygen using various temperatures and durations to investigate their stabilization behavior. Several characterization techniques were used to systematically analyze the functional group species, oxygen content and distribution, local composition, thermal pyrolysis behavior and micro-structural changes in the various stabilized tapes. After oxidative stabilization treatment, the tape-shaped fiber exhibits uniform shrinkage behavior during subsequent heat treatments thereby maintaining its tape shape and structural integrity. The ~30 μm thick tapes can be stabilized completely by treatment in oxygen at 220 °C for ~10 h and this indicates a high efficiency of stabilization, which is, perhaps unexpectedly, higher than that of corresponding ~30 μm diameter round-shaped fibers. Thermal decomposition pathways varied with the degree of stabilization and have obvious effects on the microstructure of the resulted tapes, which in turn strongly influences their final physical properties. Pitch tapes oxidized under mild conditions offered relatively higher mechanical performance. Tensile strength and Young’s modulus of 2500 °C graphitized tapes, previously oxidatively stabilized at 220 °C for 20 h, were measured to be about 2 and 250 GPa, respectively

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    Get PDF
    The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts.The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that -80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAFPeer reviewe

    Sex differences in oncogenic mutational processes

    Get PDF
    Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research.Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research.Peer reviewe

    Pan-cancer analysis of whole genomes

    No full text
    corecore